Completeness of S4 with Respect to the Lebesgue Measure Algebra Based on the Unit Interval
نویسندگان
چکیده
We prove completeness of the propositional modal logic S4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, and ♦. Propositional modal formulae are assigned to Lebesgue-measurable subsets of the real interval [0, 1], modulo sets of measure zero. Equivalence classes of Lebesgue-measurable subsets form a measure algebra, M, and we add to this a non-trivial interior operator constructed from the frame of ‘open’ elements—elements in M with an open representative. We prove completeness of the modal logic S4 for the algebra M. A corollary to the main result is that non-theorems of S4 can be falsified at each point in a subset of the real interval [0, 1] of measure arbitrarily close to 1. A second corollary is that Intuitionistic propositional logic (IPC) is complete for the frame of open elements in M.
منابع مشابه
Completeness of S4 for the Lebesgue Measure Algebra
We prove completeness of the propositional modal logic S4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, and ♦. Propositional modal formulae are assigned to Lebesgue-me...
متن کاملDynamic measure logic
This paper brings together Dana Scott’s measure-based semantics for the propositional modal logic S4, and recent work in Dynamic Topological Logic. In a series of recent talks, Scott showed that the language of S4 can be interpreted in the Lebesgue measure algebra, M, or algebra of Borel subsets of the real interval, [0, 1], modulo sets of measure zero. Conjunctions, disjunctions and negations ...
متن کاملQuantified S4 in the Lebesgue measure algebra with a constant countable domain
Define quantified S4, QS4 [first-order S4, FOS4], by combining the axioms and rules of inference of propositional S4 with the axioms and rules of classical first order logic without identity [with identity]. In the 1950’s, Rasiowa and Sikorski extended the algebraic semantics for propositional S4 to a constant-domain algebraic semantics for QS4, and showed that QS4 is sound and complete for thi...
متن کاملCompleteness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملAssessment of the completeness of Volunteered Geographic Information focusing on building blocks data (Case Study: Tehran metropolis)
Open Street Map (OSM) is currently the largest collection of volunteered geographic data, widely used in many projects as an alternative to or integrated with authoritative data. However, the quality of these data has been one of the obstacles to the widely use of it. In this article, from among the elements related to the quality of volunteered geographic data, we have tried to examine the com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010